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PREFACE
The use of the physics of sports has become

increasingly popular in recent years In teaching

physics. Sports provide excellent teaching aids

to assist the teacher in motivating and maintaining

the interest of students,, The forward pass in

football provides a vehicle for studying many

physical phenomena at the Intermediate or graduate

level. This article uses Lagrange's Equation for

a non-conservative holonomic system to develop a

mathematical model for the forward pass. The

model Is used to analyze the motion of the football

during flight. Some of the questions answered

include: Why does one pass spiral, and another

tumble ? What difference does It make whether a

quarterback is right-handed or left-handed? Why

does a pass tend to nose over on the downward side

of the trajectory, but a punt often tends to remain

in a fixed direction as the ball travels along the

trajectory? The application of physics to the game

of football can answer these and many other questions.

The study of the forward pass provides the foundationr

for such complex problems as spin-stabilized

satellites, gyroscopes, and complex projectile motion.
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ABSTRACT

The use of the physics of sports has become

increasingly popular in recent years in teaching physics.

Sports provide excellent teaching aids to assist the

teacher in motivating and maintaining the interest of

students. The forward pass in football provides a vehicle

for studying many physical phenomena at the intermediate

or graduate level. This article uses Lagrange's Equation

for a non-conservative holonomic system to develop a

mathematical model for the forward pass. The model is

used to analyze the motion of the football during flight.

Some of the questions answered include: Why does one

pass spiral, and another tumble ? What difference does

it make whether a quarterback is right-handed or left-

handed? Why does a pass tend to nose over on the downward

side of the trajectory, but a punt often tends to remain

in a fixed direction as the ball travels along the tra-

jectory? The application of physics to the game of

football can answer these and many other questions. The

study of the forward pass provides the foundation for such

complex problems as spin-stabilized s gyrc- 1 p2 -

and complex projectile motion. IV* .q A
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PHYSICS IN SPORTS--THE FORWARD PASS

It's a beautiful sunny afternoon in Pasadena,

and the Rose Bowl is filled to capacity. Pittsburgh and

Los Angeles have come on the field for pre-game warmups-

and the crowd anxiously awaits the start of the Super

Bowl. One of the spectators watcihes Terry Bradshaw throw

a beautiful spiralling pass and begins to wonder why the

football moves in a given pattern with every throw.

Why does one pass spiral, and another pass tumble?

What difference does it make whether a quarterback is

right-handed or left-handed? How does the amount of spin

on a forward pass affect the distance the pass is thrown?

Why does a pass tend to nose over on the downward side of

the trajectory, but a punt often tends to remain in a

fixed direction as the ball travels along the trajectory?

Does a pass remain in one plane when it is thrown? What

difference does it make whether the Super Bowl is played

in Los Angeles or Pittsburgh, other than familiarity with

the home field? Application of physics to the game. of

football can answer these and other questions. In fact,

such questions are priceless vehicles for introducing

physics concepts.

1
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A perennial challenge for teachers is to provide

instruction in a manner that maintains student interests

and stimulates their desires for further knowledge. One

recent approach in physics has been to relate physics

to sports. For example, the forward pass in football

provides an excellent vehicle for studying many physical

phenomena. By examining the football in flight as an

example of a rigid body in general motion, teachers of

physics can lay the foundation for solving such complex

and current problems as spin-stabilized satellites,

gyroscopes, and complex projectile motion. The football

can also be used to study the relation between rotational

and translational kinetic energy, the motion of a body

through a fluid, the effect of the earth's rotation on

a projectile, and numerous other phenomena.

Mathematical Model

To determine the equa''ons of motion for the

football during flight, one must determine the forces

acting on the football and establish coordinate systems.

Three such systems facilitate solution of the problem:

the fixed coordinates (x o Yo Zo ), the coordinates (X,Y,Z)

parallel to (xo, Yo' Z0 ) but through the center of mass

of the football, o, and coordinates (x, y, z) fixed neither

in space nor in the football. The z axis coincides
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with the axis of symmetry and is; therefore, a principal

axis. The y axis is perpendicular to the z axis and in

the z-Z plane. The x axis is defined by i = j x k, the

x axis is horizontal and perpendicular to the y-z plane.

Since x and y always remain in the plane "of symmetry of -

the football, they are also principal axes. The angles

(O, ,p) define the relative orientation between the

(x,y,z) and the (X,Y,Z) coordinate systems (see Figure 1).

The aerodynamic force due to the motion of the

football through the air and the force due to gravity are

the external forces that act on the football in free

flight. To simplify the problem, one assumes that the

aerodynamic force acts at a point, a distance r, in front

of the center of mass called the center of pressure. He

assumes, further, that the force is proportional to the

velocity squared, but it points in a direction opposite

to the velocity vector (See Figure 2). Let u be a unit

vector in the direction of the velocity vector, then

P=-Kv u, where K is an experimentally determined constant.

If we divide into components, F=Fx i + j +F k 0 The
o y0  zo

velocity of the center of mass with respect to the fixed
- 0

coordinate system is V = Xio+Yoj o+z ok If this value

is used for the velocity, since u = v, the aerodynamic

force is
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P=-Kv (xo1o +i ko)
v

or - o o
P=-KVx0i0 - KV 0 30 -KVzk (1)

By applying Lagrange's equation for a nonconser-

vative holonomic system, d (11 ) - =Q. we obtain the (2)
dt aqi eqi 1

equations of motion. To apply this equation, we must

determine the kinetic energy T, .the generalized forces Qi'

and the generalized coordinates, qi. The generalized

coordinates are (xoyoZ o0 ) for the translational motion

and (G, ,i) for the rotational motion. The kinetic energy

is
2

T= MV +h(At 2 + A02 +BQ2), (3)
x y Z

where A and C are the transverse and axial moments of

inertia and =Q Qx 2 j+ z k is the angular velocity of the

football. With the coordinate systems defined above, the

angular velocity of the (x,y,z) coordinate system is

W i+w yj+w zk= x y z*

or AAA

or = i+sincj+$cos~k. (4)

The angular velocity of the football is

i= 6i+$sinoj+(p+$coso)k. (5)

We obtain the velocity. V, of the center of mass of the

football by taking the time derivative of (x ,yoZo),

which are the coordinates of the origin of the (X,Y,Z)
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coordinate system with respect to the fixed system.

Since the origin of the (X,Y,Z) system lies at the center

of mass of the football, the velocity of the center of
2

mass, squared, is V =k 2 + 2 + 2 By substituting the
0 0 0

2 4
above values for V , and 0 into the equation for the

kinetic energy, we find that the kinetic energy of the

football is
2 2.2 2 -

T M ( 2 +-22 +. 2 2 A(O +4 sin 0) +C (i +$ cos 0) .(6)0 0 0 -

The potential energy of the football is U=MgZ.

The generalized forces corresponding to the

generalized coordinates (x0 y0 ,z0 ) are the components of

the forces in each of these coordinate directions. Based

on the above discussion of the forces, the generalized

forces corresponding to (xoyoz 0 ) are

Q =-Kvo;
x

0

Q y=-Kvo
o y 0

0

The generalized forces corresponding to the

generalized coordinates (0, , 9) are the torques about

the center of mass caused by the fact that the aerodynamic

force, P, acts at the center of pressure, a distance r from

the center of mass. We can assume that F acts in the plane

formed by the velocity vector i and the axis of the pro-

jectile. This plane is called the plane of yaw. The



6

torque will be perpendicular to the plane formed by the

velocity vector and the axis of symmetry. There will be

a torque only in the 0 direction if we assume the plane

of yaw corresponds to the z-Z plane. Let 6 be the angle

between the velocity vector and the z axis, then

Q = r x F = rF sin ,

Q = 0,

Q, = 0. (8)

Delta is called the angle of yaw (See Figure 3).

After determining generalized forces, coordinates,

and kinetic energy, we can employ Lagrange's equation:

d (T) T Q d (Mo F MRo=F
at 08) x X a-t 0 Xo0 x 0

d (T) - ;T = d (M o ) Fx M o=F x  (9)
t ) Y Yo dt o o

d (aT) - 9T = Qz d (M0)= F x -Mg Mzo=Fx -Mg
d-t (_ 0 ) 3z0  o dt 0

(aT) - aT = Q d (A6) -A sin E) o s () +C$ ( +;osE) sine =-Kv r sin6
dt (70) 30 dt

- = 0 d o oo o (10)
( Tt-) 5 d --

d (3T) - T = 0. d C(+ cos 0)] 0

0

The first three equations are the translational equa-

tions of motion that could be obtained by applying Newton's

Second Law. We can make quantitative conclusions about the

motion of the football by writing these equations in terms
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of the speed V and the angles 0 and * • The velocity

components (see Figure 4) along the (X,Y,Z) coordinates

are

= V sin 0 cos ,o o

= V sin 0 sin ,
o = V Cos o

Differentiation of these equations, results in the

following equations,

xo=-Vsin %o sin 4+V cos0cos %6 o +Vsine o Co s

y -= Vsin 0  os$ V sin, 0os 0 6o + V sine 0 sin ,

z0 = -V sine 0 6o + os 0 . (12)

When we substitute equations (11) and (12) into (9), we

have

M(-V sin o° sins; +V os cos %o 6+V sin o cos )=-KV 2sineo cos,

M(V sin oS0 co5 0+ V sin Ocos o 60+ V sin oosin V2 sine° sin , (13)

• 2M(-V sin GO 60 + V co s EnO) -KV cos e - mg

The solution of the first equation for $o yields2

MV cosO coseo 6+m9 qin eo coso + KV sine° cos o
;0= MV sin o sin (14)

By substituting this value for $ into the second equation

and simplifying, we obtain the equation

2 2 2 2
MV cos Cs e + M( sin eo os + KV sin e0 os

2 00 0 2 2 2
+MVsin f cos 0° 60 +MV sin o sin 0 =-KV sin eo sin
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or
2

MV cos 0 + MV sin 0 + KV sin =0 . (15)0 0 0 0

The solution of the third equation for 0 yields

2
6o = KV cos O ° + mg + MV cos 8o o (16)

MV sin 00

By substituting 0o into (15) and simplifying, we have
_ - -g cos °  . (17)

M

The equation for 00 may be simplified by substituting

this value for V into (16) and simplifying. The result

is

o0 = g sin0 (18)

V

Using these values for 00 and V in equation (14), yields

0= o. (19)

McCusky developed these equations for a spin stabilized

projectile.1 As he noted, the second equation indicated
that 0o is always positive since 00 lies between zero

and pi. Thus, the time rate of change of o° is positive;

i.e., 00 increases with time. The trajectory is concaved

downward. The last equation implies that * is a constant;

therefore, the trajectory is a plane curve. This result

is based on the simplifying assumptions made in formula-

ting the model. (We later discuss forces that cause the

kA
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football to move out of its original plane.)

The last three equations obtained by applying

Lagrange's equation are the rotational equations of

motion that could be obtained by applying the rotational

analog to Newton's Second Law; i.e., the torque is equal

to the time rate of change of the angular momentum,

4.
N=dL. We can determine the requirement for the football

dT

to remain stable from these equations. Stability refers

to the characteristic that allows the football to main-

tain colinearity between its axis of symmetry and the

tangent to the trajectory at the center of mass. This

is equivalent to the axis of symmetry and the velocity

vector pointing in the same direction. In this case, the

angle 0= 0 and N =O. The rotational equations of motion
0

reduce to

A; -AS2 sin ecos O+C$ s sine =o,

A sin2 0+ Cs cos =, (20)

d-
d- Cs =0,

where s = +$ coso is the spin of the football about the

z axis. By integrating the second and third equation, we

have

AS sin2 e + Cs cos E=.

Cs = (21)

mo
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where and a are constants. The first of these

equations may be solved for

=--CS coso (22)

A sin 2o

To determine the conditions under which the foot-

ball remains stable, we assume that it is disturbed

slightly and find the conditions -under which it returns

to, or oscillates about, the equilibrium position. We let

0-0 1= 6 represent a small angular deviation of the axis of

symmetry from the velocity vector, and we let n repre-

sent the corresponding perturbation of the angle *i.e.,

.n=o -0i. (Note that the subscript 1 denotes the equili-

brium or unperturbed value.) We desire the motion about

this equilibrium position; thus, we treat these values as

constant quantities. Then substituting E = 6 +E1 and 0 =n401

into the first of the rotational equations of motion

(Equation 20), we have

rF sin 6= AS + CS ; sin(6+)-A2cos(6+01 ) sin (6+01). (23)

since cos (6+01)=coso1 - 6sin81 and sin(6+E1)=6osol+ sinoI ,

rF sin 6= 9+ Cs (6coso1 + sine1 )_A 2 (so- 6sine1 )

(6cos 01 + sin 01) (24)

or

rF sin 6= A 6+ Cs n (6coso1 + sin 0 1 )-A (eOsElsinEl- sin2El

+ 6coS20 ) (25)



11

By considering only first order terms in6 and; and con-

sidering 6 small, we have

rF sin 6= As + Cs; sino1  (26)

or Cs sin - rF = o. (27)
A A

From equation (22), we have

01 - Cs Cos 01 . (28)

A sin 2 01

Since we take the motion about the equilibrium position,

we treat 01 and 01 as constants, ;i = o and . = cs cos 1.

By using this value for - and substituting O=n + 01 and

0 =6 +01 into equation (21), we have

=Cs cos 01 - cos (6 +01 )  (29)

A sin 2 (6 +

or

= Cs cos 01 - C(cos 01-6 sin 01) (30)

A(6cos 20 1 +2 6cos 01 sin 01+ sin 2 I).

By neglecting higher ordered terms, we have

r= Cs6 sin 01 = C86

A sin 2 01 A sin 01 (31)

Substituting equation (31) into equation (27),
i+(cs)2 - rF76-o

I- -  A--- (32)

For 6to be periodic

(Cs) 2 
- rF

= 1 o>0. (33)
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Therefore, the football remains stable if

2 > rFA
.2 (34)

Thus, if a pass has a spin less than the spin required

by this inequality, it will tumble. If the spin satis-

fies this inequality, the football will remain stable.

We can obtain information about the orientation

of the football by continuing the analysis of the

rotational equations of motion. Returning to equation

(31), we have

A sino 1

Since ;= o, the spin of the football, s, is just i. Thus,
=C

A si n 0 1

Unless the spin of the football is excessive, will be

small when a is small. In other words, the perturbation

of the angular velocity about the vertical will be small

as long as the axis of spin differs from the tangent to

the path by only a small amount. Note if 6>o, the nose

of the football dips below the tangent to the trajcctory,

n>o, for positive spin, and the football has a tendency

to turn to the left as seen by the quarterback. If 6co,

the nose points upward with respect to the tangent to the

path, ;<o, and the football has a tendency to turn to the

right. By using the definition for positive spin, we
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find that a right-handed quarterback, such as Roger

Staubach, would impart a positive spin to the football,

and a left-handed quarterback, such as Ken Stabler, would

impart a negative spin.

Additional Physical Phenomena

The football provides the vehicle for studying

numerous other physical phenomena. Many of these phenom-

ena make the problem more complex than it appears in the

model used thus far. For example, Roger Staubach has

developed his talent as a quarterback in much the same

way that an experimental physicist or engineer develops

a new device. He understood the basic principles of

throwing the football. When he first threw the football,

it may have slipped out of his hand and tumbled in the

wrong direction. Through experimentation, he learned the

best grip to use in throwing the football, but it still

had the tumbling motion. Through further experimentation

and practice, he learned that, by spinning the ball, he

could stop the tumbling motion and throw the perfect spiral.

Just how much spin does the quarterback need to

give the football? Is there an optimum spin? Is it

possible to give too much spin? From the mathematical

model we developed, we saw that a minimum spin is required

for the football to remain stable, s2 >rFA. When the

cz-
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quarterback throws the football, he gives it an initial

amount of kinetic energy. This kinetic energy can be

divided into two parts - translational kinetic energy,

MV2 , and rotational kinetic energy, (AQ+AQ+CQ2).

(Thus Ti= MVi+ (AS2+A22 +CS2 ). For a given value of the

initial kinetic energy, an increase in spin of the foot-

ball must result in a decrease in the initial velocity of

the football. From elementary projectile motion, a

decrease in the initial velocity for a fixed angle of

release will result in a shorter pass. If the quarter-

back expects to throw a spiralling pass that will cover

the maximum distance, he must achieve a delicate balance.

He must provide enough spin for stability, but not an

excessive amount that will result in decreased distance.

Excessive spin can cause other problems in addi-

tion to reduced distance. Gyroscopes work on the

principle that a rotating body resists change in the

direction of its axis of rotation. If a rigid body with

an axis of symmetry rotates fast enough, the axis of

rotation will tend to point in a fixed direction. If the

football is given an excessive spin, it tends to act as a

gyroscope. The axis of rotation remains pointed in a

fixed direction in space (see Figure 5). The football

appears to "float," and it fails to nose over on the
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downward side of the trajectory. The quarterback seldom

sees this effect when he throws the ball, since he rarely

imparts enough rotation with his hand. However, a punter

frequently sees it when he kicks the football.

Three basic perturbing effects act on the

football - the gyroscopic effect, the Poisson effect, and

the Magnus effect. In most cases- the gyroscopic effect

is predominant. A detailed mathematical discussion of

the gyroscopic effect can be developed from the mathemat-

ical model previously formulated.

The basic equation is N = d: the torque is equal

to the time rate of change of the angular momentum. When

the spin and thus the angular momentum is large enough,

the football becomes gyrostabilized. We saw the same

effect in our discussion of the football with excessive

spin. If an external torque acts on the football, the

spin axis changes direction. This change of direction of

the spin axis is known as precession. The football pre-

cesses at a rate proportional to the amount of torque

applied and precesses about an axis perpendicular to the

torque. The torque on the football is caused by the

aerodynamic force, P, acting at the center of pressure,

a distance r from the center of mass. This results in a

torque, N = rx. We now assume that P acts in the plane



rI

16

of yaw. If the football has a right-hand spin, the

angular momentum L is directed along the symmetry axis.

The symmetry axis will precess about the velocity vector

(tangent to the trajectory) in such a way that the nose

of the football moves to the right when it is viewed from

the rear. As soon as the nose of the football leaves the

original vertical plane, a component of the aerodynamic

force acts to the right and tends to push the football to

the right out of the original vertical plane.

Experiments with spherical projectiles have shown

that Magnus effects predominate over Poisson effects. We

first consider the Magnus effects. If a rotating

cylinder is placed in a uniform stream, there is a result-

ant aerodynamic force on the cylinder. The rotation of

the cylinder tends to retard the flow at the bottom and

speed the flow at the top of the cylinder. This results

in increased pressure at A and decreased pressure at B,

as shown in Figure 6. The pressure differential produces

a force that acts from A to B. If a rotating football is

placed in a uniform stream, as shown in Figure 6, the

velocity of the stream can be resolved into components

along the symmetry axis and perpendicular to it. The

velocity component perpendicular to the axis produces a

force as discussed with the rotating cylinder. If the

&j
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football has right-handed spin, the force will point

toward the left and cause a deviation to the left out of

the original plane.

We now consider the Poisson effect. When there

is an angle of yaw, a cushion of compressed air is

developed in front of the football. Since the football

is spinning, it has a tendency to roll over this cushion

of air as a cylinder rolls on a rough surface. If it is

given a right-hand spin, the football will roll to the

right of the original plane.

our discussion of these basic perturbing effects

shows that forces tend to push the football out of its

original plane. Simplifying assumptions have eliminated

other complicating conditions. In the case of the foot-

ball, not only the magnitude and direction but also the

point of application of the aerodynamic force changes. A

right-hand spin causes the nose of the football to follow

an oscillating line that remains mainly to the right of

the vertical plane through the tangent to the trajectory. 
2

The final question raised in the introduction was

this: what difference does it make whether the Steelers

play the Rams in Los Angeles or Pittsburgh? In all

previous discussions we have neglected the rotation of

the earth and the effects of air density on the football.
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Both of these conditions affect the flight of the foot-

ball. Most textbooks on dynamics discuss the earth's

rotation on a projectile in flight. The magnitude of the

effect depends on the latitude. The closer the projectile

to the equator; the smaller the force. In the northern

hemisphere, projectiles tend to drift to the right because

of this corriolis force. Thus, th& drift caused by

corriolis would be less in Los Angeles than in Pittsburgh.

Because of the short distances a football is thrown, the

effect would be very small in either location. If the

game were played in Denver, the lower air density in

Denver would result in slightly longer passes.

In studying the forward pass in football we have

discussed many basic physics principles and have dis-

covered some interesting facts about football. A pass

spirals beciuse of the magnitude of its spin. Since a

right-handed quarterback gives the football a positive

spin, the football tends to turn slightly to the right

and drift slightly to the right out of the original ver-

tical plane. The opposite is true for a left-handed

quarterback. The quarterback must maintain a delicate

balance, he must achieve enough spin for stability, but

too much spin will reduce the distance of the pass. And,

if he gives a football too much spin, which often occurs
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in punts, it fails to nose over on the downward side of

the trajectory. The axis of symmetry remains in a fixed

direction, and the football is gyrostabilized.

The use of the physics of sports has given the

physics teacher a valuable teaching aid to maintain the

interests of students and motivate them toward additional

study. The author has only touched the surface in

discussing the physical phenomena in the latter part of

the article. A much more detailed discussion could be

accomplished in the classroom. Teachers should also

encourage their students to look into such problems. Why?

In order for them to integrate the basic studies of physics

they have completed. The forward pass vividly demonstrates

the value of an interdisciplinary background. The prob-

lems students will face in tomorrow's world dictate the

need for at least a fundamental understanding of all basic

physics disciplines.
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FOOTNOTES
1McCusky, S. W., An Introduction to Advanced

Dynamics (Addison-Wesley Publishing Company, Reading,
Massachusetts, 1959), PP.139-141.
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CAPTIONS

Figure 1: Coordinate Systems

Figure 2: Forces on the Football

Figure 3: Plane of Yaw and Angle of Yaw

Figure 4: Velocity Components

Figure 5: Stable and Over-stable Footballs

Figure 6: Magnus Effect
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